

Monday 22 June 2015 – Morning

A2 GCE MATHEMATICS (MEI)

4756/01 Further Methods for Advanced Mathematics (FP2)

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

- Printed Answer Book 4756/01
- MEI Examination Formulae and Tables (MF2)

Duration: 1 hour 30 minutes

Other materials required:

• Scientific or graphical calculator

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is **72**.
- The Printed Answer Book consists of **12** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

Section A (54 marks)

1 (a) (i) A curve has polar equation $r = 2a\cos\theta + 2b\sin\theta$, where a > 0 and b > 0.

Show, by considering its cartesian equation, that the curve is a circle which passes through the origin. Find the centre and radius of the circle in terms of *a* and *b*. [5]

- (ii) For the case a = b = 1, use integration to show that the region bounded by a minor arc of the circle and the lines $\theta = \frac{\pi}{6}$ and $\theta = \frac{\pi}{3}$ has area $1 + \frac{\pi}{3}$. [5]
- (b) Given that $f(t) = \ln(1+t)$, obtain expressions for f'(t), f''(t) and f'''(t). Hence show that the Maclaurin series for $\ln(1+t)$ begins

$$t - \frac{t^2}{2} + \frac{t^3}{3} \dots$$

Deduce the first two non-zero terms of the Maclaurin series for $\ln\left(\frac{1+t}{1-t}\right)$. [8]

2 (a) (i) By considering
$$\left(z + \frac{1}{z}\right)^5$$
, where $z = \cos \theta + j \sin \theta$, show that
 $\cos^5 \theta = \frac{1}{16} (\cos 5\theta + 5\cos 3\theta + 10\cos \theta).$ [5]

- (ii) Use de Moivre's theorem to find an expression for $\cos 5\theta$ in terms of powers of $\cos \theta$. [5]
- (b) (i) Obtain the roots of the equation $w^5 = 4\sqrt{2}$ in the form $re^{j\theta}$. Show the points corresponding to these roots in an Argand diagram. [4]
 - (ii) For each root w, let $v = w\sqrt{2}e^{j\pi/10}$.

Show the points corresponding to the values of *v* on your Argand diagram.

Find, in simplified form, an equation for which the values of *v* are the roots. [4]

- 3 This question concerns the matrix **M** where $\mathbf{M} = \begin{pmatrix} 5 & -1 & 3 \\ 4 & -3 & -2 \\ 2 & 1 & 4 \end{pmatrix}$.
 - (i) Obtain the characteristic equation of M.

Find the eigenvalues of **M**.

These eigenvalues are denoted by λ_1 , λ_2 , λ_3 , where $\lambda_1 < \lambda_2 < \lambda_3$.

(ii) Verify that an eigenvector corresponding to λ_1 is $\begin{pmatrix} 1\\ 3\\ -1 \end{pmatrix}$ and that an eigenvector corresponding to λ_2 is

$$\begin{bmatrix} 1\\2\\-1 \end{bmatrix}$$
. Find an eigenvector of the form $\begin{bmatrix} a\\1\\c \end{bmatrix}$ corresponding to λ_3 . [5]

[7]

(iii) Write down a matrix **P** and a diagonal matrix **D** such that $\mathbf{M} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$. (You are not required to calculate \mathbf{P}^{-1} .)

Hence write down an expression for \mathbf{M}^4 in terms of \mathbf{P} and a diagonal matrix. You should give the elements of the diagonal matrix explicitly. [3]

(iv) Use the Cayley-Hamilton theorem to obtain an expression for M^4 as a linear combination of M and M^2 . [3]

Section B (18 marks)

4 (i) Starting with the relationship $\cosh^2 t - \sinh^2 t = 1$, deduce a relationship between $\tanh^2 t$ and $\operatorname{sech}^2 t$. [1] You are given that $y = \operatorname{artanh} x$.

(ii) Show that
$$\frac{dy}{dx} = \frac{1}{1 - x^2}$$
. [4]

(iii) Show, by integrating the result in part (ii), that $y = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$. [4]

(iv) Show that
$$\int_{0}^{\frac{\sqrt{3}}{6}} \frac{1}{1-3x^2} dx = \frac{1}{\sqrt{3}} \operatorname{artanh} \frac{1}{2}$$
. Express this answer in logarithmic form. [4]

(v) Use integration by parts to find $\int \operatorname{artanh} x \, dx$, giving your answer in terms of logarithms. [5]

END OF QUESTION PAPER

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Monday 22 June 2015 – Morning

A2 GCE MATHEMATICS (MEI)

4756/01 Further Methods for Advanced Mathematics (FP2)

PRINTED ANSWER BOOK

Candidates answer on this Printed Answer Book.

OCR supplied materials:

- Question Paper 4756/01 (inserted)
- MEI Examination Formulae and Tables (MF2)

Other materials required:

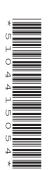
Scientific or graphical calculator

Duration: 1 hour 30 minutes

Candidate forename	Candidate surname	

Centre number						Candidate number					
---------------	--	--	--	--	--	------------------	--	--	--	--	--

INSTRUCTIONS TO CANDIDATES


These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is **72**.
- The Printed Answer Book consists of **12** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

Section A (54 Marks)

[
1 (a) (i)	
	_
	_
	_
	_
1(a)(ii)	
1 (a) (ii)	

1(b)	

2 (a) (i)	
2(a)(1)	

2 (a) (ii)	

2(b)(i)	
(ii)	

3 (i)	

3(ii)	

3 (iii)	
3(iv)	
3(IV)	
3 (IV)	
5 (IV)	
5 (IV)	
5(11)	
5(10)	
5(10)	
5(10)	
5(10)	
5(10)	
5(10)	
5(10)	
5(10)	
5(10)	
5(10)	
5(10)	
5(10)	
5(10)	

Section B (18 Marks)

4(i)	
4 (ii)	
4 (iii)	

4(iv)	
4 (v)	

PLEASE DO NOT WRITE ON THIS PAGE

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Annotations and abbreviations

Annotation in scoris	Meaning
√and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
^	Omission sign
MR	Misread
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*	Method mark dependent on a previous mark, indicated by *
сао	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working

Subject-specific Marking Instructions for GCE Mathematics (MEI) Pure strand

a Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.

b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct *solutions* leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Ε

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Mark Scheme

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.

- f Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.
- g Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

h For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

(Questi	ion	Answer	Marks	Guidance					
1	(a)	(i)	$r^2 = 2ar\cos\theta + 2br\sin\theta$		(Not yet sufficient for M1)					
			$x^{2} + y^{2} = 2ax + 2by$	M1 A1	Using $r^2 = x^2 + y^2$, $r \cos \theta = x$ or $r \sin \theta = y$ in the equation	e.g. $x = (2a\cos\theta + 2b\sin\theta)\cos\theta$				
			Rearrange to $(x-a)^2 + (y-b)^2 = a^2 + b^2$ Circle centre (a, b) , radius $\sqrt{a^2 + b^2}$ Convincing that it passes through origin	A1A1 E1 [5]	Found, not guessed!					
		(ii)	Show that $\frac{1}{2}r^2 = 2 + 2\sin 2\theta$ Integrate to $2\theta - \cos 2\theta$	M1A1 M1A1 E1	For r^2 or $\frac{1}{2}r^2$ Or $2\theta + 2\sin^2\theta$	Must reach integrable form for M1 M1 for integrating $\sin 2\theta$ or $\sin \theta \cos \theta$				
	(b)		Evaluate between limits get $1 + \frac{\pi}{3}$ f'(t) = $(1 + t)^{-1}$ f''(t) = $-(1 + t)^{-2}$ f'''(t) = $2(1 + t)^{-3}$	[5] B1 B1 B1	Answer given oe, e.g. $2(1 + t) / (1 + t)^4$					
			f(t) = 2(1+t) f(0) = 0, f'(0) = 1, f''(0) = -1, f'''(0) = 2 Convincing to series for ln(1 + t) Use ln(1 + t) - ln(1 - t) Obtain $2t + \frac{2t^3}{3} +$	M1A1 E1 M1 A1 [8]	M1 for knowing to put $t = 0$. Answer given or other method or B2 if no method shown	M1A0 if f(0) = 0 unclear (but E1 can still be given) <i>If x used instead of t, penalise once</i> <i>only</i>				
				[18]						

(Questio	on	Answer	Marks	G	uidance
2	(a)	(i)	$\left(z+\frac{1}{z}\right) = 2\cos\theta$	B1		
			$\left(z+\frac{1}{z}\right)^5 = 32\cos^5\theta$	B1	Allow 2 ⁵	Implies previous B1
			$\left(z + \frac{1}{z}\right)^5 = z^5 + 5z^3 + 10z + 10z^{-1} + 5z^{-3} + z^{-5}$ $= 2\cos 5\theta + 10\cos 3\theta + 20\cos \theta$	M1A1	M1 for binomial expansion (unsimplified) including some coefficients	
			(Hence result)	E1 [5]	Answer given	
		(ii)	$\cos 5\theta = \operatorname{Re}\left(e^{j5\theta}\right) = \operatorname{Re}\left(\left(c+js\right)^{5}\right)$	B1 M1	e.g. $\cos 5\theta + j\sin 5\theta = (c + js)^5$ Expansion of $(c + js)^5$	OR M1 for finding $\cos 3\theta$ in terms of <i>c</i> , <i>s</i> and using (i)
			$= c^5 - 10c^3s^2 + 5cs^4$	A1	Must be explicit expression for $\cos 5\theta$	A1 for $\cos 3\theta = c^3 - 3cs^2$ oe A1 for expression for $\cos 5\theta$
			Simplify to $16\cos^5\theta - 20\cos^3\theta + 5\cos\theta$	M1A1 [5]		
	(b)	(i)	Roots are $\sqrt{2} \exp(j0, j2\pi/5, j4\pi/5, j6\pi/5, j8\pi/5)$	B1	for $\sqrt{2}$ oe, e.g. $2^{1/2}$, 1.41 (at least 3 roots needed)	B0 for $(4\sqrt{2})^{1/5}$
			Argand diagram with points at vertices of a regular pentagon, one vertex at $(\sqrt{2}, 0)$ (FT <i>r</i> , but not $4\sqrt{2}$)	B1 G2 [4]	θ oe, e.g. $-j2\pi/5$, $-j4\pi/5$, $j2\pi$ Allow $\sqrt{2}$ instead of $\sqrt{2} \exp(j0)$ Some indication of scale required	B0 for $(\cos 2\pi/5 + j \sin 2\pi/5)$ etc Give G1 for any regular pentagon centre O <i>or</i> for 4 correct points
		(ii)	New points rotated $\pi/10$ from old points. New modulus $\sqrt{2}$ times old modulus	G1 G1	Must have five points Must have five points	
			$v^{5} = w^{5} \left(\sqrt{2}\right)^{5} e^{j\pi/2}$ $= 32j$	M1 A1 [4] [18]	or $(2 e^{j\pi/10})^5$ etc Accept correct answer for both marks	M1A0 for $v^5 = 32 e^{j\pi/2}$ M0 for $v^5 = 32 e^{\pi/2}$ (with no working)

Q	uestion	Answer	Marks	Guidan	ce
3	(i)	$\det(\mathbf{M} - \lambda \mathbf{I}) = (5 - \lambda)((-3 - \lambda)(4 - \lambda) + 2)$	M1A1	M1 for attempt at det($\mathbf{M} - \lambda \mathbf{I}$)	
		$+ (4(4-\lambda)+4)$	A1	A1 each term correct	
		$+3(4-2(-3-\lambda))$	A1		
		Simplify to $\lambda^3 - 6\lambda^2 - 7\lambda = 0$	A1	A0 if $' = 0$ ' never appears	
		Solve to $\lambda = -1, 0, 7$	M1A1	M1 for eigenvalues are roots of char eqn	
			[7]		
	(ii)		M1	For clear evidence of understanding	e.g. Just finding eigenvector for $\lambda = 7$
		Show that M $(1 \ 3 \ -1)^{T} = (-1 \ -3 \ 1)^{T}$	A1	A1 each calculation	would earn M1A0A0B1B1
		Show that M $(1 \ 2 \ -1)^{T} = (0 \ 0 \ 0)^{T}$	A1		
		Obtain equations			
		-2a + 3c = 1, $2a - c = 5$ or equivalent	B1	FT Two correct equations	
		Solve to obtain $\begin{pmatrix} 4 & 1 & 3 \end{pmatrix}^{T}$	B1	CAO Accept $a = 4, c = 3$	
			[5]		
	(iii)	$(1 \ 1 \ 4) (-1 \ 0 \ 0)$			
		$P = \begin{vmatrix} 3 & 2 & 1 \end{vmatrix} D = \begin{vmatrix} 0 & 0 & 0 \end{vmatrix}$			For B2, order must be consistent
		$P = \begin{pmatrix} 1 & 1 & 4 \\ 3 & 2 & 1 \\ -1 & -1 & 3 \end{pmatrix} D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 7 \end{pmatrix}$	B1B1	FT	
		$\mathbf{M}^4 = \mathbf{P}\mathbf{D}^4\mathbf{P}^{-1}$ where $\mathbf{D}^4 = \text{diag}(1 \ 0 \ 2401)$	B1	CAO	
			[3]		
	(iv)	C-H: $M^3 = 6M^2 + 7M$	M1		
		$\mathbf{M}^4 = 6\mathbf{M}^3 + 7\mathbf{M}^2$	A1	CAO	
		$= 6(6\mathbf{M}^2 + 7\mathbf{M}) + 7\mathbf{M}^2$			
		$=43\mathbf{M}^2+42\mathbf{M}$	A1	CAO	
			[3]		
			[18]		

	Juestio	n Answer	Marks	Guidan	ce
4	(i)	Divide through by $\cosh^2 t$ to obtain $1 - \tanh^2 t = \operatorname{sech}^2 t$	B1	No working required	
			[1]		
	(ii)	$\tanh y = x$	B1	OR	M1 for $(d/dx)(\frac{1}{2}(\ln(1 + x) - \ln(1 - x)))$
		$\operatorname{sech}^2 y y' = 1$ oe	M1A1	M1 for (\pm) sech ² y	A1A1 for $\frac{1}{2}(1/(1+x) + 1/(1-x))$
		$y' = 1 / \operatorname{sech}^2 y = 1 / (1 - \tanh^2 y) = 1 / (1 - x^2)$	E1 [4]	Answer given	E1 for $1/(1-x^2)$
	(iii)	$\frac{1}{1-x^2} = \frac{1}{2} \left(\frac{1}{1-x} + \frac{1}{1+x} \right)$	M1A1		M0 if standard formula for integrating $1 / (a^2 - x^2)$ is used; but B1B1 can still be given
		Integrate to $\frac{1}{2}(\ln(1+x) - \ln(1-x)) + c$	B1	B0 if no ' + <i>c</i> '	
		Hence $\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right) + c$		Answer given (without c)	
		Use $x = 0$, $y = 0$ to show $c = 0$	B1		
			[4]		
	(iv)	Substitute $u = \sqrt{3} x$ to obtain			
		$\frac{1}{\sqrt{3}}\int_{0}^{1/2}\frac{1}{1-u^{2}}du$	M1	or artanh($x\sqrt{3}$)	
		• •	A1	or $(1/\sqrt{3})$ artanh $(x\sqrt{3})$	
		Hence $\frac{1}{\sqrt{3}}$ artanh $\frac{1}{2}$	E1	Answer given	
		Which is $\frac{1}{2\sqrt{3}} \ln 3$	B1	oe, e.g. $(\sqrt{3}/6)\ln 3$, $(1/\sqrt{3})\ln(\sqrt{3})$	
		$2\sqrt{3}$	[4]		

Mark Scheme

C	Question Answer M		Marks	Guidan	ce	
	(v)		$\int 1 \times \operatorname{artanh} x \mathrm{d}x = x \operatorname{artanh} x - \int \frac{x}{1 - x^2} \mathrm{d}x$	M1A1		
			Hence $x \operatorname{artanh} x + \frac{1}{2} \ln(1 - x^2) + c$			
			Equals $\frac{1}{2}x\ln\left(\frac{1+x}{1-x}\right) + \frac{1}{2}\ln(1-x^2) + c$	B1B1B1	Third mark is for <i>c</i>	
			2(1-x) - 2	[5]		
				[18]		

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.gualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT GROUP

4756 Further Methods for Advanced Mathematics (FP2)

General Comments

Most candidates demonstrated a sound working knowledge of all the topics being examined, and appeared to have sufficient time to complete the paper. When marks were lost, this was very often due to a lack of care rather than a misunderstanding of the concepts. The average marks on all four questions were quite similar but, by a small margin, Q.3 (on matrices) was the best-answered question, and Q.4 (on hyperbolic functions) was the worst.

Comments on Individual Questions

- Q.1(a)(i) Many candidates made hardly any progress here; for example, expressing $x = r \cos\theta$ and $y = r \sin\theta$ in terms of θ , followed by some fruitless manipulation, then giving up. Those who started by multiplying the given polar equation by *r* quickly obtained a suitable cartesian equation from which the centre and radius could be deduced. Very many omitted to mention why the circle passed through the origin; this shows how important it is for candidates to read through the questions very carefully, making sure that they have answered every part.
- Q.1(a)(ii) The method for finding the area was well understood, and was very often carried out accurately. A frequent error was to expand $(2\cos\theta + 2\sin\theta)^2$ as $(4\cos^2\theta + 4\cos\theta\sin\theta + 4\sin^2\theta)$. Many candidates used double angle formulae to integrate $\cos^2\theta$ and $\sin^2\theta$, instead of using $\cos^2\theta + \sin^2\theta = 1$ first.
- Q.1(b) Most candidates understood the process of finding a Maclaurin series and obtained the given result correctly. As the answer is given on the question paper, full working must be shown, and this included some indication that f(0) = 0. In the final part, most candidates used $\ln(1 + t) \ln(1 t)$, although many took $\ln(1 t)$ to be -f(t) instead of f(-t), leading to the common wrong answer of $2t t^2$.
- Q.2(a)(i) This part was well-answered.
- Q.2(a)(ii) This was also well-answered, with most candidates using the expected method of expanding $(\cos\theta + j \sin\theta)^5$. An alternative approach, taken by many candidates, was to rearrange the result from part (i) and then express $\cos^3\theta$ in terms of $\cos\theta$ and $\cos^3\theta$.
- Q.2(b)(i) Most candidates obtained the correct values of *w* in exponential form. Common errors included taking the argument of the real number $4\sqrt{2}$ to be $\frac{1}{2}\pi$ or π instead of 0, and not simplifying the fifth root of $4\sqrt{2}$ to $\sqrt{2}$. Indicating the five values on an Argand diagram was generally done well, although many diagrams did not include any indication of the scale.
- Q.2(b)(ii) The pentagon was usually enlarged and rotated correctly to show the values of *v*. Many candidates made no attempt to find an equation. Those that did often left $32e^{j\pi/2}$ in their final answer, when this should have been simplified to 32j.
- Q.3(i) The expansion of det($\mathbf{M} \lambda \mathbf{I}$) was done extremely well and most candidates obtained the characteristic equation, and the three eigenvalues, correctly.
- Q.3(ii) Most candidates understood the concept of eigenvectors and knew how to find them. Some did as intended and verified that the two given eigenvectors worked, but very many found all three by solving equations.
- Q.3(iii) This part was very well answered.

- Q.3(iv) Most candidates understood the Cayley-Hamilton theorem and were able to obtain M^4 . Careless errors such as going from $M^3 - 6M^2 - 7M = 0$ to $M^4 - 6M^3 - 7M = 0$ or $M^3 = 6M^2 - 7M$ were fairly common.
- Q.4(i)-(ii) These parts were answered well. Throughout this question, some candidates lost several marks through carelessness such as writing sec where sech was intended, or tanh where artanh was intended.
- Q.4(iii) Here candidates were required to use partial fractions to obtain the integral. Two of the four marks were given for including a constant of integration and then showing it to be zero. Very many candidates omitted this essential part of the argument.
- Q.4(iv) Most candidates integrated correctly and showed sufficient working to justify the given result. Many did not go on to express the answer in logarithmic form, even though the relevant formula is given in part (iii).
- Q.4(v) Most candidates understood how to apply integration by parts to this integral. Common errors in the final answer were failure to write $\operatorname{artanh}(x)$ in terms of logaritms, an incorrect sign for the $\frac{1}{2}\ln(1-x^2)$ term, and omission of the arbitrary constant.

	ematics (MEI)		Max Mark	а	b	с	d	е	u
4751	01 C1 – MEI Introduction to advanced mathematics (AS)	Raw	72	63	58	53	48	43	0
		UMS	100	80	70	60	50	40	0
4752	01 C2 – MEI Concepts for advanced mathematics (AS)	Raw	72	56	50	44	39	34	0
	(OO) MELMathada fan Ashannad Mathamatian with	UMS	100	80	70	60	50	40	0
4753	01 (C3) MEI Methods for Advanced Mathematics with Coursework: Written Paper	Raw	72	56	51	46	41	36	0
4753	(C3) MEI Methods for Advanced Mathematics with Coursework: Coursework	Raw	18	15	13	11	9	8	0
4753	(C3) MEI Methods for Advanced Mathematics with Coursework: Carried Forward Coursework Mark	Raw	18	15	13	11	9	8	0
	Coursework. Carried I of ward Coursework mark	UMS	100	80	70	60	50	40	0
4754	01 C4 – MEI Applications of advanced mathematics (A2)	Raw	90	74	67	60	54	48	0
		UMS	100	80	70	60	50	40	0
4755	01 FP1 – MEI Further concepts for advanced mathematics (AS)	Raw	72	62	57	53	49	45	0
		UMS	100	80	70	60	50	40	0
4756	01 FP2 – MEI Further methods for advanced mathematics (A2)	Raw	72	65	58	52	46	40	0
		UMS	100	80	70	60	50	40	0
4757	FP3 – MEI Further applications of advanced mathematics	Raw	72	59	52	46	40	34	0
-101	(A2)								
	(DE) MEI Differential Equations with Coursework: Written	UMS	100	80	70	60	50	40	0
4758	Paper	Raw	72	63	57	51	45	38	0
4758	02 (DE) MEI Differential Equations with Coursework: Coursework	Raw	18	15	13	11	9	8	0
4758	(DE) MEI Differential Equations with Coursework: Carried Forward Coursework Mark	Raw	18	15	13	11	9	8	0
		UMS	100	80	70	60	50	40	0
4761	01 M1 – MEI Mechanics 1 (AS)	Raw	72	62	54	46	39	32	0
4762	01 M2 – MEI Mechanics 2 (A2)	UMS Raw	100 72	80 54	70 47	60 40	50 33	40 27	0
4702		UMS	100	80	70	60	50	40	0
4763	01 M3 – MEI Mechanics 3 (A2)	Raw	72	64	56	48	41	34	0
		UMS	100	80	70	60	50	40	0
4764	01 M4 – MEI Mechanics 4 (A2)	Raw	72	53	45	38	31	24	0
4766	01 C1 MEL Statistics ((AC)	UMS Raw	100 72	80 61	70 54	60 47	50 41	40 35	0
4700	01 S1 – MEI Statistics 1 (AS)	UMS	100	80	54 70	47 60	50	35 40	0
4767	01 S2 – MEI Statistics 2 (A2)	Raw	72	65	60	55	50	46	0
-		UMS	100	80	70	60	50	40	0
4768	01 S3 – MEI Statistics 3 (A2)	Raw	72	64	58	52	47	42	0
		UMS	100	80	70	60	50	40	0
4769	01 S4 – MEI Statistics 4 (A2)	Raw	72	56	49	42	35	28	0
4774	01 D1 MEL Decision methometics 1 (AS)	UMS	100	80	70	60	50	40	0
4771	01 D1 – MEI Decision mathematics 1 (AS)	Raw UMS	72 100	56 80	51 70	46 60	41 50	37 40	0 0
4772	01 D2 – MEI Decision mathematics 2 (A2)	Raw	72	54	49	44	39	34	0
		UMS	100	80	70	60	50	40	0
4773	01 DC – MEI Decision mathematics computation (A2)	Raw	72	46	40	34	29	24	0
		UMS	100	80	70	60	50	40	0
4776	01 (NM) MEI Numerical Methods with Coursework: Written Paper	Raw	72	56	50	45	40	34	0
4776	02 (NM) MEI Numerical Methods with Coursework: Coursework	Raw	18	14	12	10	8	7	0
4776	82 (NM) MEI Numerical Methods with Coursework: Carried Forward Coursework Mark	Raw	18	14	12	10	8	7	0
		UMS	100	80	70	60	50	40	0
4777	01 NC – MEI Numerical computation (A2)	Raw	72	55	47	39	32	25	0
	,	UMS	100	80	70	60	50	40	0
4798	01 FPT - Further pure mathematics with technology (A2)	Raw	72	57	49	41	33	26	0
		UMS	100	80	70	60	50	40	0

GCE Statis	stics (MEI)								
			Max Mark	а	b	с	d	е	u
G241	01 Statistics 1 MEI (Z1)	Raw	72	61	54	47	41	35	0
		UMS	100	80	70	60	50	40	0
G242	01 Statistics 2 MEI (Z2)	Raw	72	55	48	41	34	27	0
		UMS	100	80	70	60	50	40	0
G243	01 Statistics 3 MEI (Z3)	Raw	72	56	48	41	34	27	0
		UMS	100	80	70	60	50	40	0
GCE Quar	ntitative Methods (MEI)								
			Max Mark	а	b	С	d	е	u
G244	01 Introduction to Quantitative Methods MEI	Raw	72	58	50	43	36	28	0
G244	02 Introduction to Quantitative Methods MEI	Raw	18	14	12	10	8	7	0
		UMS	100	80	70	60	50	40	0
G245	01 Statistics 1 MEI	Raw	72	61	54	47	41	35	0
		UMS	100	80	70	60	50	40	0
0040	01 Decision 4 MEL	Raw	72	56	51	46	41	37	0
G246	01 Decision 1 MEI	INdW	12	00	01	-0		01	0